

### **SONGLIM**

Songlim Fastener Co., Ltd.

15, Geumhyeongyeongje-ro, Gasan-myeon, Pocheon-si, Gyunggi-Do, Republic of Korea

T 82-31-543-F.100 82-31-542-6477 www.withsl.co.kr

—— ISO 9001, 14001, Q ОРГАН СЕРТИФИКАЦИИ

Версия. 1.0 JAN 2022





# **ТЕХНИЧЕСКОЕ** РУКОВОДСТВО

### СОДЕРЖАНИЕ

# COMFIX I-36 применение с анкерной шпилькой

| Основные данные о нагрузке (для одиночного анкера) | 04                                                                                                                           |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Данные для расчета                                 | 08                                                                                                                           |
| - Нагрузка растяжения                              | 08                                                                                                                           |
| - Нагрузка сдвига                                  | 11                                                                                                                           |
| - Устойчивость к комбинированным нагрузкам         | 14                                                                                                                           |
| растяжения и сдвига                                |                                                                                                                              |
| - Время отверждения                                | 15                                                                                                                           |
|                                                    | Данные для расчета  - Нагрузка растяжения  - Нагрузка сдвига  - Устойчивость к комбинированным нагрузкам растяжения и сдвига |

### COMFIX I-36 применение с арматурой

| > | Основные данные о нагрузке (для одиночного анкера) | 16 |
|---|----------------------------------------------------|----|
| > | Данные для расчета                                 | 22 |
|   | - Нагрузка растяжения                              | 22 |
|   | - Нагрузка сдвига                                  | 26 |
|   | - Устойчивость к комбинированным нагрузкам         | 29 |
|   | растяжения и сдвига                                |    |

2 SONGLIM химический анк

# СОМГІХ І-36 ПРИМЕНЕНИЕ С АНКЕРНОЙ ШПИЛЬКОЙ

**>>** Базовые данные по нагрузке (для одиночного анкера)

- Бетон без трещин
- Монтаж анкера в соответствии с инструкцией
- Отсутствие влияния краевого и межосевого расстояния и интервала
- Наименьшее сопротивление анкера по стали
- Бетон  $f_{ck}$  = 21 N/mm2
- Пористое основание

Установка в направлении вниз и горизонтально

-Состояние бетона:

Установка в сухой бетон и использование в сухом бетоне

- Температура бетона при температуре монтажа

диапазон от +10°C~+30°С (менее +10С: отверждение)

- Постоянная нагрузка: адгезивная прочность Х 0,55





#### > Технические данные

| Размер анкера                             | M10 | M12 | M16 | M20 | M22 | M24 | M27 | M30 |
|-------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Глубина установки $(h_{ef,s{ m mm^2}})$   | 90  | 110 | 125 | 170 | 190 | 210 | 240 | 270 |
| Мин толщина основания $(h_{\min \min^2})$ | 120 | 140 | 165 | 220 | 250 | 270 | 300 | 340 |

#### > Механические свойства анкера

| Размер анкер                                       | Размер анкера |      |      | M16 | M20 | M22 | M24 | M27  | M30  |
|----------------------------------------------------|---------------|------|------|-----|-----|-----|-----|------|------|
| Предел прочности на                                | Grade 5.8     | 500  | 500  | 500 | 500 | 800 | 500 | 500  | 500  |
| растяжение $f_{u\!k}$ N/mm²;                       | Grade 4.8     | 400  | 400  | 400 | 400 | 400 | 400 | 400  | 400  |
| Предел текучести                                   | Grade 5.8     | 400  | 400  | 400 | 400 | 400 | 400 | 400  | 400  |
| $f_{yk \; { m N/mm^2}}$                            | Grade 4.8     | 320  | 320  | 320 | 320 | 320 | 320 | 320  | 320  |
| Площадь поперечного сечения ( $A_s$ ,mm $^2$ )     |               | 58.0 | 84.3 | 157 | 245 | 303 | 353 | 459  | 561  |
| Момент сопротивления $(W_{el}$ , mm <sup>3</sup> ) |               | 62.3 | 109  | 277 | 541 | 744 | 935 | 1387 | 1874 |

KC B U333 3002

#### $\sim$ Среднее предельное сопротивление: бетон C21 ( $f_{ck}$ =21 N/mm²), анкер G 5.8

| Размер анкера            | M10  | M12  | M16  | M20  | M22   | M24   | M27   |
|--------------------------|------|------|------|------|-------|-------|-------|
| Растяжение $N_{um}$ (kN) | 30.3 | 44.1 | 57.7 | 98.1 | 110.5 | 133.2 | 155.7 |
| Сдвиг $V_{um\;(kN)}$     | 15.3 | 22.2 | 41.3 | 64.5 | 79.8  | 92.9  | 120.8 |

#### > **Характерное сопротивление**: бетон C21 ( $f_{ck}$ =21 N/mm2), анкер G 5.8

| Размер анкера                    | M10  | M12  | M16  | M20  | M22  | M24  | M27   | M30   |
|----------------------------------|------|------|------|------|------|------|-------|-------|
| Растяжение $N_{Rk}$ (kN)         | 19.8 | 29.0 | 37.7 | 64.1 | 72.2 | 87.1 | 101.8 | 127.2 |
| $_{C_{ДBU\Gamma}}\ V_{Rk\;(kN)}$ | 14.5 | 21.1 | 39.3 | 61.3 | 75.8 | 88.3 | 114.8 | 140.3 |

#### > Расчетное сопротивление: бетон C21 ( $f_{ck}$ =21 N/mm2), анкер G 5.8

| Размер анкера             | M10  | M12  | M16  | M20  | M22  | M24  | M27  | M30   |
|---------------------------|------|------|------|------|------|------|------|-------|
| Растяжение $N_{Rd(kN)}$   | 9.4  | 13.8 | 18.0 | 30.5 | 34.4 | 41.5 | 48.5 | 60.6  |
| $_{Cдвиг}V_{Rd}\;_{(kN)}$ | 11.6 | 16.9 | 31.4 | 49.0 | 60.6 | 70.6 | 91.8 | 112.2 |

Л ХИМИЛЕСКИ<u>Й УНКЕ</u>Р



#### » Рекомендованные нагрузки: бетон C21 $f_{ck}$ =21 N/mm²), анкер G 5.8

| Размер анкера      | M10   | M12  | M16  | M20    | M22  | M24  | M27  | M30  |
|--------------------|-------|------|------|--------|------|------|------|------|
| Растяжение NR (kN) | 6.7   | 9.9  | 12.8 | 2 1 .8 | 24.6 | 29.6 | 34.6 | 43.3 |
| Сдвиг VR (kN)      | : 8.3 | 12.0 | 22.4 | 35.0   | 43.3 | 50.4 | 65.6 | 80.1 |

<sup>\*</sup> C общим частичным запасом прочности для действия  $\gamma$  = 1.4

#### » Среднее предельное сопротивление: бетон C21 ( $f_{ck}$ =21 N/mm $^2$ ), анкер G 4.8

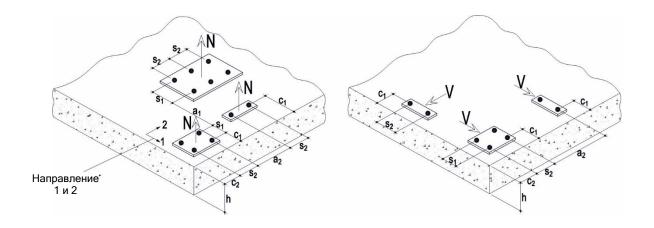
| Размер анкера                | M10  | M12  | M16  | M20  | M22   | M24   | M27   | M30   |
|------------------------------|------|------|------|------|-------|-------|-------|-------|
| Растяжение $N_{um({ m kN})}$ | 24.3 | 35.3 | 57.7 | 98.1 | 110.5 | 133.2 | 155.7 | 194.7 |
| $_{Cдвиг}V_{um(kN)}$         | 12.2 | 17.8 | 33.1 | 51.6 | 63.8  | 74.3  | 96.7  | 118.1 |

#### » Характерное сопротивление: бетон C21 ( $f_{ck}$ =21 N/mm²), анкер G 4.8

| Размер анкера            | M10   | M12  | M16  | M20  | M22  | M24  | M27   | M30   |
|--------------------------|-------|------|------|------|------|------|-------|-------|
| Растяжение $N_{Rk}$ (kN) | 1 9.8 | 29.0 | 37.7 | 64.1 | 72.2 | 87.1 | 101.8 | 127.2 |
| $_{Cдвиг}V_{Rk(kN)}$     | Γ1 .6 | 16.9 | 31.4 | 49.0 | 60.6 | 70.6 | 91.8  | 112.2 |

#### » Расчетное сопротивление : бетон C21 ( $f_{ck}$ =21 N/mm²), анкер G 4.8

| Размер анкера            | M10 | M12  | M16  | M20  | M22  | M24  | M27  | M30  |
|--------------------------|-----|------|------|------|------|------|------|------|
| Растяжение $N_{Rd}$ (kN) | 9.4 | 13.8 | 18.0 | 30.5 | 34.4 | 41.5 | 48.5 | 60.6 |
| $_{Cдвиг}V_{Rd\;(kN)}$   | 9.3 | 13.5 | 25.1 | 39.2 | 48.5 | 56.5 | 73.4 | 89.8 |


#### » Рекомендованные нагрузки : бетон C21 $(f_{ck}$ =21 N/mm²), анкер G 4.8

| Размер анкера          | M10 | M12 | M16  | M20  | M22  | M24  | M27  | M30  |
|------------------------|-----|-----|------|------|------|------|------|------|
| Растяжение $N_{R(kN)}$ | 6.7 | 9.9 | 12.8 | 21.8 | 24.6 | 29.6 | 34.6 | 43.3 |
| $_{Cдвиг}V_{R\;(kN)}$  | 6.6 | 9.6 | 17.9 | 28.0 | 34.6 | 40.3 | 52.5 | 64.1 |

<sup>\*</sup> C общим частичным запасом прочности для действия  $\gamma$  = 1.4

> Детали установки и критическое краевое расстояние

| Размер анкера                                                                                           | M10                   | M12                        | M16                                              | 5 M2 | :0 M | 22 N | Л24 | M27 | M30 |
|---------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|--------------------------------------------------|------|------|------|-----|-----|-----|
| Номинальный диаметр бура                                                                                | $d_0$                 | 12                         | 14                                               | 18   | 25   | 26   | 28  | 32  | 35  |
| Диапазон эффективной<br>глубины анкеровки и глубины                                                     | $h_{ef,  m min}$      | 60                         | 70                                               | 95   | 120  | 130  | 145 | 160 | 180 |
| отверстий                                                                                               | $h_{ef,\mathrm{max}}$ | 150                        | 180                                              | 240  | 300  | 330  | 360 | 405 | 450 |
| Мин. толщина основания                                                                                  | $h_{\min}$            | 120                        | 140                                              | 165  | 220  | 250  | 270 | 300 | 300 |
|                                                                                                         | 111111                | $h_{ef}$ +3                | $h_{ef} +30 \ge 100 \qquad \qquad h_{ef} +2 d_o$ |      |      |      |     |     |     |
| Диаметр отверстия в<br>прикрепляемом<br>конструкционном элементе                                        | $d_f$                 | 12                         | 14                                               | 18   | 22   | 24   | 26  | 30  | 33  |
| Мин. Межосевое<br>расстояние                                                                            | $s_{ m min}$          | 50                         | 60                                               | 80   | 100  | 110  | 120 | 135 | 150 |
| Мин. краевое расстояние                                                                                 | $c_{ m min}$          | 50 60 80 100 110 120 135   |                                                  |      |      |      |     | 150 |     |
| Критическое краевое расстояние для комбинированного сопротивления вытягивания и бетонному конусу        | $c_{cr,N}$            | 1.5 <i>h</i> <sub>ef</sub> |                                                  |      |      |      |     |     |     |
| Критическое расстояние между анкерами для комбинированного сопротивления вытягиванию и бетонному конусу | $s_{cr,N}$            | 2.0 <sup>C</sup> cr,N      |                                                  |      |      |      |     |     |     |





#### > Данные для расчета

#### Растягивающая нагрузка

Расчетное сопротивление растяжению для одного анкера составляет наименьшее значение из

$$N_{Rd} = \min \left( N_{Rd,p}, \ N_{Rd,s} 
ight)$$

- Расчетного сопротивление разрушению при растягивающей нагрузке:

$$:_{N_{Rd,p}} = N_{Rd,p}^{0} \cdot \ f_{b,p} \cdot \ f_{b,p} \cdot \ f_{s,N} \cdot \ f_{ed,N} \cdot \ f_{sd,N} \cdot \ f_{re,N}$$

- Расчетное сопротивление разрушению по стали:

 $N_{Rd,s}$ 

> Расчетное комбинированное сопротивление растяжению и сопротивление разрушению бетонного конуса  $N^0_{Rd,p}$ 

| Размер анкера     | M10 | M12  | M16  | M20  | M22  | M24  | M27  | M30  |
|-------------------|-----|------|------|------|------|------|------|------|
| $N^0_{Rd,p}$ (kN) | 9.4 | 13.8 | 18.0 | 30.5 | 34.4 | 41.5 | 48.5 | 60.6 |
| $h_{ef,s\;(mm)}$  | 90  | 110  | 125  | 170  | 190  | 210  | 240  | 270  |

<sup>\*</sup> Бетон С21,  $f_{d:cube} = 21 \text{ N/mm}^2$ 

> Влияние прочности бетона на комбинированное сопротивление вытягиванию и сопротивление разрушению бетонного конуса:  $f_{bp}$ 

| Марка бетона | C21  | C24  | C27  | C30  | C35  | C40  | C45  | C50  |
|--------------|------|------|------|------|------|------|------|------|
| $f_{b,p}$    | 1.00 | 1.01 | 1.03 | 1.04 | 1.05 | 1.07 | 1.08 | 1.09 |

 $<sup>*</sup>f_{ck}$  : Прочность бетона на сжатие, измеренная на кубах со стороной 150 мм

> Влияние глубины анкеровки на комбинированное сопротивление вырыву вытягиванию и бетонному конусу:  $f_{hp}$ 

$$f_{h,p} = h_{e\!f}/h_{e\!f,s}$$
 где:  $h_{e\!f, ext{min}} \leq h_{e\!f} \leq h_{e\!f, ext{max}}$ 

» Коэффициент влияния расстояния от оси анкера до края бетона: $f_{
m sN}$ 

| Краевое расстояние | M10         | M12              | M16                                 | M20  | M22  | M24  | M27  | M30  |
|--------------------|-------------|------------------|-------------------------------------|------|------|------|------|------|
| 50                 | 0.81        |                  |                                     |      |      |      |      |      |
| 60                 | 0.83        | 0.81             |                                     |      |      |      |      |      |
| 80                 | 0.88        | 0.85             | 0.83                                | 6.82 |      |      |      |      |
| 100                | 0.92        | 0.88             | 0.86                                |      |      |      |      |      |
| 110                | 0.94        | 0.90             | 0.88                                | 0.83 | 0.82 |      |      |      |
| 120                | 0.97        | 0.92             | 0.89                                | 0.84 | 0.83 | 0.81 |      |      |
| 135                | 1.00        | 0.95             | 0.92                                | 0.86 | 0.84 | 0.83 | 0.81 |      |
| 150                |             | 0.97             | 0.94                                | 0.88 | 0.86 | 0.84 | 0.83 | 0.81 |
| 165                |             | 1.00             | 0.96                                | 0.89 | 0.87 | 0.86 | 0.84 | 0.82 |
| 190                |             |                  | 1.00                                | 0.92 | 0.90 | 0.88 | 0.86 | 0.84 |
| 255                |             |                  |                                     | 1.00 | 0.97 | 0.94 | 0.91 | 0.89 |
| 285                |             |                  |                                     |      | 1.00 | 0.97 | 0.94 | 0.91 |
| 315                | $f_{x} = 0$ | .7 +0.3-         | <u>c</u> < 1                        |      |      | 1.00 | 0.96 | 0.93 |
| 360                | $J_{s,N}$   | $c \ge c_{\min}$ | $C_{cr,N} \stackrel{	ext{	o}}{=} 1$ |      |      |      | 1.00 | 0.97 |
| 405                |             | $c \ge c_{\min}$ |                                     |      |      |      |      | 1.00 |

» Влияние расстояния от оси анкера до края бетона  $f_{\mathit{ed},N}$ 

| Краевое расстояние | M10            | M12              | M16                            | M20  | M22  | M24  | M27  | M30  |
|--------------------|----------------|------------------|--------------------------------|------|------|------|------|------|
| 50                 | 0.69           |                  |                                |      |      |      |      |      |
| 60                 | 0.72           | 0.68             |                                |      |      |      |      |      |
| 80                 | 0.80           | 0.74             | 0.71                           |      |      |      |      |      |
| 100                | 0.87           | 0.80             | 0.77                           | 0.70 |      |      |      |      |
| 110                | 0.91           | 0.83             | 0.79                           | 0.72 | 0.69 |      |      |      |
| 120                | 0.94           | 0.86             | 0.82                           | 0.74 | 0.71 | 0.69 |      |      |
| 135                | 1.00           | 0.91             | 0.86                           | 0.76 | 0.74 | 0.71 | 0.69 |      |
| 150                |                | 0.95             | 0.90                           | 0.79 | 0.76 | 0.74 | 0.71 | 0.69 |
| 165                |                | 1.00             | 0.94                           | 0.82 | 0.79 | 0.76 | 0.73 | 0.70 |
| 190                |                |                  | 1.00                           | 0.87 | 0.83 | 0.80 | 0.76 | 0.73 |
| 255                |                |                  |                                | 1.00 | 0.95 | 0.90 | 0.85 | 0.81 |
| 285                |                |                  |                                |      | 1.00 | 0.95 | 0.90 | 0.85 |
| 315                | C              | 25105            | c                              |      |      | 1.00 | 0.94 | 0.89 |
| 360                | $f_{ed,N} = 0$ | J.5+0.5-         | $\frac{c}{c_{\sigma,N}} \le 1$ |      |      |      | 1.00 | 0.94 |
| 405                |                | $c \ge c_{\min}$ |                                |      |      |      |      | 1.00 |



#### > Влияние осевого расстояния между анкерами: $f_{sd,N}$

| Расстояние между<br>анкерами | M10          | M12              | M16      | M20  | M22  | M24  | M27  | M30  |
|------------------------------|--------------|------------------|----------|------|------|------|------|------|
| 50                           | 0.59         |                  |          |      |      |      |      |      |
| 60                           | 0.61         | 0.59             |          |      |      |      |      |      |
| 80                           | 0.65         | 0.62             | 0.61     |      |      |      |      |      |
| 100                          | 0.69         | 0.65             | 0.63     | 0.60 |      |      |      |      |
| 110                          | 0.70         | 0.67             | 0.65     | 0.61 | 0.60 |      |      |      |
| 120                          | 0.72         | 0.68             | 0.66     | 0.62 | 0.61 | 0.60 |      |      |
| 135                          | 0.75         | 0.70             | 0.68     | 0.63 | 0.62 | 0.61 | 0.59 |      |
| 150                          | 0.78         | 0.73             | 0.70     | 0.65 | 0.63 | 0.62 | 0.60 | 0.59 |
| 270                          | 1.00         | 0.91             | 0.86     | 0.76 | 0.74 | 0.71 | 0.69 | 0.67 |
| 330                          |              | 1.00             | 0.94     | 0.82 | 0.79 | 0.76 | 0.73 | 0.70 |
| 375                          |              |                  | 1.00     | 0.87 | 0.83 | 0.80 | 0.76 | 0.73 |
| 510                          |              |                  |          | 1.00 | 0.95 | 0.90 | 0.85 | 0.81 |
| 570                          |              |                  |          |      | 1.00 | 0.95 | 0.90 | 0.85 |
| 630                          |              | 05105            | 8        |      |      | 1.00 | 0.94 | 0.89 |
| 720                          | $f_{sd,N} =$ | $s \ge s_{\min}$ | $ \le 1$ |      |      |      | 1.00 | 0.94 |
| 810                          |              | $s \ge s_{\min}$ |          |      |      |      |      | 1.00 |

#### > Коэффициент выкрашивания оболочки: $f_{re,N}$

| $h_{\it ef}$ (mm)                           | 40   | 50   | 60   | 70   | 80   | 90   | 100  |
|---------------------------------------------|------|------|------|------|------|------|------|
| $f_{re,N} = 0.5 + \frac{h_{ef}}{200} \le 1$ | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00 |

<sup>\*</sup> Если в зоне анкеровки имеется арматура с шагом ≥150 mm или диаметром ≤ 10 мм и шагом  $\geq$  100 мм, то независимо от глубины анкеровки может применяться коэффициент скалывания оболочки  $\Psi_{re,N}$  = 1,0.

#### > Расчетное сопротивление разрушению по стали: $N_{Rd\,s}$

| Размер анкера                       | M10  | M12  | M16  | M20  | M22   | M24   | M27   | M30   |
|-------------------------------------|------|------|------|------|-------|-------|-------|-------|
| $N_{Rds}$ Марка 5.8 (kN )           | 19.3 | 28.1 | 52.3 | 81.7 | 101.0 | 117.7 | 153.0 | 187.0 |
| $\overline{N_{Rds}}$ Марка 4.8 (kN) | 15.5 | 22.5 | 41.9 | 65.3 | 80.8  | 94.1  | 122.4 | 149.6 |

<sup>\*</sup> KS B 0233 2005



#### ■ Сдвиг

- Расчетное сопротивление на сдвиг для одного анкера составляет наименьшее значение из:  $V_{Rd} = \min_{\min} \left( V_{Rd,cp}, V_{Rd,cp}, V_{Rd,s} \right)$ 

-- Расчетное сопротивление разрушению кромки бетона:

$$V_{Rd,c} = V_{Rd,c}^0 \cdot f_{b,V} \cdot f_{\alpha,V} \cdot f_{b,V} \cdot f_{sc,V} \cdot f_{s,V}$$

- Расчетное сопротивление разрушению на скол бетона:

$$V_{Rd,cp} = k \cdot N_{Rd,p}$$

- Расчетное сопротивление стали срезающему усилию:

 $V_{Rd,s}$ 

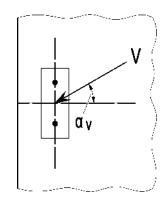
> Расчетное сопротивление разрушению кромки бетона:  $V^0_{Rd,c}$ 

| Размер анкера                 | M10 | M12 | M16  | M20  | M22  | M24  | M27  | M30  |
|-------------------------------|-----|-----|------|------|------|------|------|------|
| $V_{Rd,c}^{0}\left( kN ight)$ | 5.4 | 7.5 | 11.7 | 17.5 | 20.7 | 24.1 | 29.5 | 35.5 |
| C <sub>min</sub> (mm)         | 50  | 60  | 80   | 100  | 110  | 120  | 135  | 150  |
| $h_{ef,s(mm)}$                | 90  | 110 | 125  | 170  | 190  | 210  | 240  | 270  |

<sup>\*</sup> Бетон С21,  $f_{ck}$  =21 N/mm

#### > Влияние прочности бетона: $f_{b,V}$

| Марка бетона | C21  | C24  | C27  | C30  | C35  | C40  | C45  | C50  |
|--------------|------|------|------|------|------|------|------|------|
| $f_{b,V}$    | 1.00 | 1.07 | 1.13 | 1.20 | 1.29 | 1.38 | 1.46 | 1.54 |


 $<sup>^{\</sup>star}f_{ck}$  : прочность бетона на сжатие, измеренная на кубах со стороной 150 мм

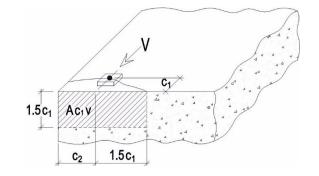


#### > Влияние направления сдвиговой нагрузки $f_{lpha,V}$

| угол $^{lpha_{V}}$ [ $^{\circ}$ ] | 0    | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |
|-----------------------------------|------|------|------|------|------|------|------|------|------|------|
| $f_{lpha,V}$                      | 1.00 | 1.01 | 1.05 | 1.13 | 1.24 | 1.40 | 1.64 | 1.97 | 2.32 | 2.50 |

$$f_{lpha V} = \sqrt{rac{1}{\left(\cos \, lpha_V
ight)^2 + \left(rac{\sin \, lpha_V}{2.5}
ight)^2}} \ge 1.0$$




#### > Влияние толщины элемента: $f_{h\,V}$

| $h/c_1 (h < 1.5c_1)$                | 0.3  | 0.5  | 0.7  | 0.9  | 1.1  | 1.3  | 1.5  |
|-------------------------------------|------|------|------|------|------|------|------|
| $f_{h,V} = \sqrt{\frac{h}{1.5c_1}}$ | 0.45 | 0.58 | 0.68 | 0.77 | 0 86 | 0.93 | 1.00 |

#### > Влияние расстояния до кромки: $f_{s,V}$

| $c_2/c_1$  | 0.3  | 0.5  | 0.7  | 0.9  | 1.1  | 1.3  | 1.5  |
|------------|------|------|------|------|------|------|------|
| $f_{ed,V}$ | 0.76 | 0.80 | 0.84 | 0.88 | 0 92 | 0.96 | 1.00 |

для 
$$c_2 \! < \! 1.5 c_1$$
 
$$f_{s\,V} \! = \! 0.7 \! + \! \frac{c_2}{1.5 c_1} \! \leq 1$$



# > Коэффициент влияния расстояния между анкерами и краевого расстояния на краевое сопротивление бетона: $f_{sc,V}$

|                          |      |              | Группа из двух анкеров $c_{ m l}/c_{ m min}$ |             |                 |      |             |             |                 |      |      |      |      |      |      |                     |      |
|--------------------------|------|--------------|----------------------------------------------|-------------|-----------------|------|-------------|-------------|-----------------|------|------|------|------|------|------|---------------------|------|
|                          |      | 1.0          | 1.2                                          | 1.4         | 1.6             | 1.8  | 2.0         | 2.2         | 2.4             | 2.6  | 2.8  | 3.0  | 3.2  | 3.4  | 3.6  | 3.8                 | 4.0  |
| Один ан                  | кер  | 1.00         | 1.31                                         | 1.66        | 2.02            | 2.41 | 2.83        | 3.26        | 3.72            | 4.19 | 4.69 | 5.20 | 5.72 | 6.27 | 6.83 | 7.41                | 8.00 |
|                          | 1.0  | 0.67         | 0.84                                         | 1.03        | 1.22            | 1.43 | 1.65        | 1.88        | 2.12            | 2.36 | 2.62 | 2.89 | 3.16 | 3.44 | 3.73 | 4.03                | 4.33 |
|                          | 1.5  | 0.75         | 0.93                                         | 1.12        | 1.33            | 1.54 | 1.77        | 2.00        | 2.25            | 2.50 | 2.76 | 3.03 | 3.31 | 3.60 | 3.89 | 4.19                | 4.50 |
|                          | 2.0  | 0.83         | 1.02                                         | 1.22        | 1.43            | 1.65 | 1.89        | 2.13        | 2.38            | 2.63 | 2.90 | 3.18 | 3.46 | 3.75 | 4.05 | 4.35                | 4.67 |
|                          | 2.5  | 0.92         | 1.11                                         | 1.32        | 1.54            | 1.77 | 2.00        | 2.25        | 2.50            | 2.77 | 3.04 | 3.32 | 3.61 | 3.90 | 4.21 | 4.52                | 4.83 |
|                          | 3.0  | 1.00         | 1.20                                         | 1.42        | 1.64            | 1.88 | 2.12        | 2.37        | 2.63            | 2.90 | 3.18 | 3.46 | 3.76 | 4.06 | 4.36 | 4.68                | 5.00 |
|                          | 3.5  |              | 1.30                                         | 1.52        | 1.75            | 1.99 | 2.24        | 2.50        | 2.76            | 3.04 | 3.32 | 3.61 | 3.91 | 4.21 | 4.52 | 4.84                | 5.17 |
|                          | 4.0  |              | <br>                                         | 1.62        | 1.86            | 2.10 | 2.36        | 2.62        | 2.89            | 3.17 | 3.46 | 3.75 | 4.05 | 4.36 | 4.68 | 5.00                | 5.33 |
|                          | 4.5  |              | <br>                                         | <br>        | 1.96            | 2.21 | 2.47        | 2.74        | 3.02            | 3.31 | 3.60 | 3.90 | 4.20 | 4.52 | 4.84 | 5.17                | 5.50 |
|                          | 5.0  |              | <br>                                         |             | [<br> <br> <br> | 2.33 | 2.59        | 2.87        | 3.15            | 3.44 | 3.74 | 4.04 | 4.35 | 4.67 | 5.00 | 5.33                | 5.67 |
|                          | 5.5  | <br> -<br> - | <br>                                         | <br>        | <br>            | <br> | 2.71        | 2.99        | 3.28            | 3.57 | 3.88 | 4.19 | 4.50 | 4.82 | 5.15 | 5.49                | 5.83 |
|                          | 6.0  |              | <br>                                         | <br>        | <br>            | <br> | 2.83        | 3.11        | 3.41            | 3.71 | 4.02 | 4.33 | 4.65 | 4.98 | 5.31 | 5.65                | 6.00 |
| $s_{\! 2}/c_{\!  m min}$ | 6.5  |              | <br>                                         | [<br>[<br>[ | 1               | <br> | [<br> <br>  | 3.24        | 3.54            | 3.84 | 4.16 | 4.47 | 4.80 | 5.13 | 5.47 | 5.82                | 6.17 |
| 2 111111                 | 7.0  |              | <br>                                         | <br>        | [<br>[<br>[     |      | [<br>[<br>[ | <br>        | 3.67            | 3.98 | 4.29 | 4.62 | 4.95 | 5.29 | 5.63 | 5.98                | 6.33 |
|                          | 7.5  |              |                                              | <br>        |                 |      | l<br>       | <br>        | <br>            | 4.11 | 4.43 | 4.76 | 5.10 | 5.44 | 5.79 | 6.14                | 6.50 |
|                          | 8.0  |              | <br>                                         | <br>        | [<br> <br>      | <br> | [<br>       | <br>        | <br>            | !    | 4.57 | 4.91 | 5.25 | 5.59 | 5.95 | 6.30                | 6.67 |
|                          | 8.5  |              | <br>                                         | <br>        | [<br> <br>      | <br> | <br>        | <br>        | <br> <br>       |      |      | 5.05 | 5.40 | 5.75 | 6.10 | 6.47                | 6.83 |
|                          | 9.0  |              | <br>                                         | <br> <br>   |                 |      | <br>        | !<br>!<br>! | <br> <br> -<br> |      | <br> | 5.20 | 5.55 | 5.90 | 6.26 | 6.63                | 7.00 |
|                          | 9.5  |              | <br>                                         | <br>        |                 |      | <br>        | <br>        | <br>            |      | <br> |      | 5.69 | 6.05 | 6.42 | 6.79                | 7.17 |
|                          | 10.0 |              |                                              |             |                 |      |             | <br>        | <br>            |      |      |      |      | 6.21 | 6.58 | 6.95                | 7.33 |
|                          | 10.5 |              | <br>                                         |             | 1               |      | <br>        | <br>        |                 |      |      | <br> | <br> | <br> | 6.74 | 7.12                | 7.50 |
|                          | 11.0 |              | 1                                            | <br>        |                 |      | <br>        | <br>        | <br>            |      |      | <br> |      |      |      | 7.28                | 7.67 |
|                          | 11.5 |              | <br>                                         | <br>        | <br>            |      | <br>        | <br>        | <br>            |      | <br> | <br> |      |      | <br> | <br> <br> <br> <br> | 7.83 |
|                          | 12.0 |              | <br>                                         | <br>        | <br>            |      | <br>        | <br>        | <br>            |      |      | <br> | <br> | <br> | <br> | <br>                | 8.00 |

где, 
$$f_{sc,V}\!=\!\frac{1}{2}\frac{A_{c,V}}{A_{c,V}^0}$$
 
$$c_1\geq c_{\min},\ s_2\geq s_{\min},\ h\geq 3c_1$$
 
$$A_{c,V}\!=\!4.5c_1^2,\ A_{c,V}^0\!=\!(3c_1\!+\!s_2)\!\times\!1.5c_1$$



#### > Расчетное разрушение отрыва бетона: $V_{Rd,cp}$

$$V_{Rd,cp}=k\cdot N_{Rd,p}$$
 где,  $k\!=\!1$   $h_{\!e\!f}\!<\!60$ m m  $k\!=\!2$   $h_{\!e\!f}\!\geq\!60$ m m

#### > Расчетное сопротивление стали: $V_{Rd,s}$

| Размер анкера             | M10  | M12  | M16  | M20  | M22  | M24  | M27  | M30   |
|---------------------------|------|------|------|------|------|------|------|-------|
| $V_{Rd,s}$ Марка 5.8 (kN) | 11.6 | 16.9 | 31.4 | 49.0 | 60.6 | 70.6 | 91.8 | 112.2 |
| $V_{Rd,s}$ Марка 4.8 (kN) | 9.3  | 13.5 | 25.1 | 39.2 | 48.5 | 56.5 | 73.4 | 89.8  |

<sup>\*</sup> KS B 02332 2005



#### ■ Сопротивление комбинированным нагрузкам растяжения и сдвига

Для комбинированного растяжения и сдвига должно выполняться следующее уравнение.

$$\left(rac{N_{Sd}}{N_{Rd}}
ight)^{\!\!lpha}\!+\!\left(rac{V_{Sd}}{V_{Rd}}
ight)^{\!\!lpha}\!\leq\!1$$
 .

где,

 $N_{\!S\!d}$ : расчетное значение растягивающей нагрузки

 $V_{S\!d}$  : расчетное значение нагрузки сдвига

 $N_{Rd}$  : расчетное значение сопротивления растяжению

 $V_{Rd}$  : расчетное значение сопротивления сдвигу

 $lpha\!=\!2.0$ : если  $N_{Rd}$  и  $V_{Rd}$  управляются разрушением стали

 $lpha\!=\!1.5$ : для всех других режимов разрушения

#### ■ Время отверждения

| Температура материала<br>основы | -5°C | 0°C    | +10°C  | +20°C  | +30°C     | +40°C  |
|---------------------------------|------|--------|--------|--------|-----------|--------|
| Рабочее время                   | 1 ч  | 45 мин | 30 мин | 20 мин | 10 мин    | 5 мин  |
| Время отверждения               | 12 ч | 8 ч    | 4 ч    | 2 ч    | 1ч 30 мин | 50 мин |

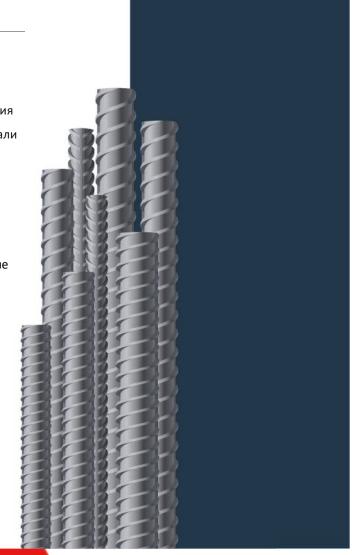
# **COMFIX I-36** ПРИМЕНЕНИЕ 🧭 **АРМАТУРОЙ**

#### **>>** Базовые данные по нагрузкам (для одиночного анкера)

- Бетон без трещин
- Монтаж анкера в соответствии с инструкцией
- Отсутствует влияние краевого и межосевого расстояния
- Наименьшее сопротивление анкера по стали
- - Бетон  $f_{ck}$  = 21 N/mm2
- Перфорированные отверстия

Установка в направлении вниз и горизонтально

-Состояние бетона:


Установка в сухой бетон и использование в сухом бетоне

- Температура бетона при температуре монтажа

диапазон от +10°C~+30°C (менее +10С: отверждение)

- Постоянная нагрузка: адгезивная прочность Х 0,55





#### »Технические данные

| Технические данные                              | D10 | D13 | D16 | D19 | D22 | D25 | D29 | D32 |
|-------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Глубина установки $(\stackrel{h_{ef,s}}{,}$ mm) | 90  | 110 | 125 | 170 | 190 | 210 | 240 | 270 |
| Мин. толщина основания $h_{\min, \ mm}$ )       | 120 | 140 | 165 | 220 | 250 | 270 | 310 | 350 |

#### » Механические свойства анкера

| Размер анкера                      |                                     | D10            | D13   | D16   | D19   | D22     | D25   | D29   | D32   |
|------------------------------------|-------------------------------------|----------------|-------|-------|-------|---------|-------|-------|-------|
| Предел прочности на                | SD500                               |                |       | 항복    | 복강도의  | 1.15배 0 | 상     |       |       |
| растяжение<br>( $f_{u\!k}$ , N/m²) | SD400                               | 항복강도의 1.08배 이상 |       |       |       |         |       |       |       |
|                                    | SD300                               |                |       |       |       |         |       |       |       |
|                                    | SD500                               | 500            | 500   | 500   | 500   | 500     | 500   | 500   | 500   |
| Предел текучести                   | SD400                               | 400            | 400   | 400   | 400   | 400     | 400   | 400   | 400   |
| $(f_{uk}$ , N/m $^2$ )             | SD300                               | 300            | 300   | 300   | 300   | 300     | 300   | 300   | 300   |
| Площадь поперечного<br>сечения     | $(A_s, \text{ mm}^2)$               | 71.33          | 126.7 | 198.6 | 286.5 | 387.1   | 506.7 | 642.4 | 794.2 |
| Момент сопротивления               | (W <sub>d</sub> , mm <sup>3</sup> ) | 85.0           | 201.2 | 394.8 | 684.0 | 1074    | 1609  | 2297  | 3157  |

<sup>\*</sup> KS D 35042016

#### » Среднее предельное сопротивление: бетон C21 ( $f_{ck}$ =21 N/mm²),

| Размер анкера                | D10  | D13  | D16  | D19  | D22   | D25   | D29   | D32   |
|------------------------------|------|------|------|------|-------|-------|-------|-------|
| Растяжение $V_{um}({ m kN})$ | 30.3 | 49.4 | 60.2 | 98.2 | 117.4 | 148.3 | 156.0 | 173.3 |
| Сдвиг $N_{um}$ (kN)          | 20.2 | 35.8 | 56.1 | 81.0 | 109.4 | 143.2 | 181.6 | 224.5 |

#### » Характерное сопротивление: бетон C21 ( $f_{ck}$ =21 N/mm²), SD500

| Размер анкера              | D10  | D13  | D16  | D19  | D22   | D25   | D29   | D32   |
|----------------------------|------|------|------|------|-------|-------|-------|-------|
| Растяжение $N_{Rk}$ (kN)   | 18.9 | 30.8 | 37.5 | 61.2 | 73.2  | 92.4  | 97.2  | 108.0 |
| $_{Cдвиг}V_{Rk}	ext{(kN)}$ | 19.3 | 34.2 | 53.6 | 77.4 | 104.5 | 136.8 | 173.4 | 214.4 |



#### > Расчетное сопротивление: concrete C21 ( $f_{ck}$ =21 N/ mm²), SD500

| Размер анкера            | D10   | D13  | D16  | D19  | D22  | D25  | D29   | D32   |
|--------------------------|-------|------|------|------|------|------|-------|-------|
| Растяжение $N_{Rd}$ (kN) | 9.0   | 14.7 | 17.9 | 29.1 | 34.8 | 44.0 | 46.3  | 51.4  |
| $_{Cдвиг}V_{Rd\;(kN)}$   | 1 2.8 | 22.8 | 35.7 | 51.6 | 69.7 | 91.2 | 115.6 | 143.0 |

#### > Рекомендованные нагрузки: бетон C21 ( $f_{ck}$ =21 N/ mm²), SD500

| Размер анкера                | D10 | D13  | D16  | A 9  | D22  | D25  | D29  | D32   |
|------------------------------|-----|------|------|------|------|------|------|-------|
| Растяжение $^{N_{\!R}}$ (kN) | 6.4 | 10.5 | 12.8 | 20.8 | 24.9 | 31.4 | 33.1 | 36.7  |
| $_{Cдвиг}V_{R\;(kN)}$        | 9.2 | 16.3 | 25.5 | 36.8 | 49.8 | 65.1 | 82.6 | 102.1 |

<sup>\*</sup> C общим частичным запасом прочности для действия:  $\gamma$  = 1.4

#### > Среднее предельное сопротивление: бетон C21 ( $f_{ck}$ =21 N/ mm²), SD400

| Размер анкера             | D10  | D13  | D16  | D19  | D22   | D25   | D29   | D32   |
|---------------------------|------|------|------|------|-------|-------|-------|-------|
| Растяжение $N_{u,m}$ (kN) | 30.3 | 49.4 | 60.2 | 98.2 | 117.4 | 148.3 | 156.0 | 173.3 |
| $_{Cдвиг}V_{u,m(kN)}$     | 17.2 | 30.5 | 47.8 | 69.0 | 93.2  | 122.0 | 154.7 | 191.3 |

#### > Характерное сопротивление: бетон C21 ( $f_{ck}$ =21 N/ mm²), SD400

| Размер анкера            | D10  | D13  | D16  | D19  | D22  | D25   | D29   | D32   |
|--------------------------|------|------|------|------|------|-------|-------|-------|
| Растяжение $N_{Rk}$ (kN) | 18.9 | 30.8 | 37.5 | 61.2 | 73.2 | 92.4  | 97.2  | 108.0 |
| Shear $V_{Rk}$ (kN)      | 16.4 | 29.1 | 45.7 | 65.9 | 89.0 | 116.5 | 147.8 | 182.7 |

#### > Расчетное сопротивление: concrete C21 ( $f_{ck}$ =21 N/ mm²), S4500

| Размер анкера                       | D10  | D13  | D16  | D19  | D22  | D25  | D29  | D32   |
|-------------------------------------|------|------|------|------|------|------|------|-------|
| Растяжение $^{N_{Rd(\mathrm{kN})}}$ | 9.0  | 14.7 | 17.9 | 29.1 | 34.8 | 44.0 | 46.3 | 51.4  |
| Shear $V_{Rd}$ (kN)                 | 10.9 | 19.4 | 30.5 | 43.9 | 59.4 | 77.7 | 98.5 | 121.8 |

#### > Рекомендованные нагрузки : бетон C21 ( $f_{ck}$ =21 N/ mm²), SD400

| Размер анкера                | D10 | D13  | D16  | D19  | D22  | D25  | D29  | D32  |
|------------------------------|-----|------|------|------|------|------|------|------|
| Растяжение $N_R$ (kN)        | 6.4 | 10.5 | 12.8 | 20.8 | 24.9 | 31.4 | 33.1 | 36.7 |
| $_{C_{ДBИ\Gamma}}V_{R}$ (kN) | 7.8 | 13.9 | 21.8 | 31.4 | 42.4 | 55.5 | 70.4 | 87.0 |

<sup>\*</sup> C общим частичным запасом прочности для действия:  $\gamma$  = 1.4

#### > Среднее предельное сопротивление: бетон C21 $f_{ck}$ =21 N/ mm²), SD300

| Размер анкера               | D10  | D13  | D16  | D19  | D22   | D25   | D29   | D32   |
|-----------------------------|------|------|------|------|-------|-------|-------|-------|
| Растяжение $N_{u,m,\;(kN)}$ | 25.8 | 45.8 | 60.2 | 98.2 | 117.4 | 148.3 | 156.0 | 173.3 |
| $_{Cдвиг}V_{u,m}$ (kN)      | 12.9 | 22.9 | 35.9 | 51.7 | 69.9  | 91.5  | 116.0 | 143.4 |

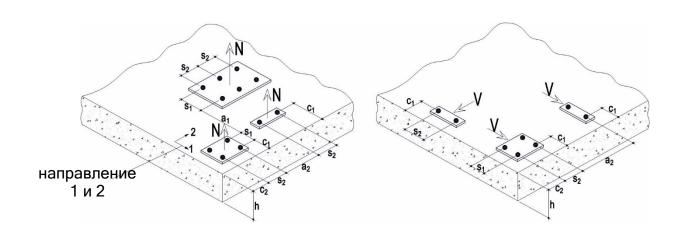
#### > Характерное сопротивление: бетон C21 ( $f_{ck}$ =21N/mm²), SD300

| Размер анкера            | D10  | D13  | D16  | D19  | D22  | D25  | D29   | D32   |
|--------------------------|------|------|------|------|------|------|-------|-------|
| Растяжение $N_{Rk}$ (kN) | 18.9 | 30.8 | 37.5 | 61.2 | 73.2 | 92.4 | 97.2  | 108.0 |
| $_{Cдвиг}\ V_{Rk\ (kN)}$ | 12.3 | 21.9 | 34.3 | 49.4 | 66.8 | 87.4 | 110.8 | 137.0 |

#### > Расчетное сопротивление: бетон C21 ( $f_{ck}$ =21 N/ mm²), SD300

| Размер анкера         | D10 | D13  | D16  | D19  | D22  | D25  | D29  | D32  |
|-----------------------|-----|------|------|------|------|------|------|------|
| Tensile $N_{Rk}$ (kN) | 9.0 | 14.7 | 17.9 | 29.1 | 34.8 | 44.0 | 46.3 | 51.4 |
| Shear $V_{Rk}$ (kN)   | 8.2 | 14.6 | 22.8 | 32.9 | 44.5 | 58.3 | 73.9 | 91.3 |

#### > Рекомендованные нагрузки : бетон C21 ( $f_{ck}$ =21 N/ mm²), SD300


| Размер анкера                     | D10 | D13  | D16  | D19  | D22  | D25  | D29  | D32  |
|-----------------------------------|-----|------|------|------|------|------|------|------|
| Растяжение $N_{R\ (\mathrm{kN})}$ | 6.4 | 10.5 | 12.8 | 20.8 | 24.9 | 31.4 | 33.1 | 36.7 |
| $_{CДВиг}V_{R\;(kN)}$             | 5.9 | 10.4 | 16.3 | 23.5 | 31.8 | 41.6 | 52.8 | 65.2 |

<sup>\*</sup> С общим частичным запасом прочности для действия:  $\gamma = 1.4$ 



#### > Детали установки и критическое краевое расстояние

| Размер анкера                                                                              |                       | D10                | D13   | D16 | D19                   | D22 | D25 | D29 | D32 |  |
|--------------------------------------------------------------------------------------------|-----------------------|--------------------|-------|-----|-----------------------|-----|-----|-----|-----|--|
| Номинальный диаметр бура                                                                   | $d_0$                 | 13                 | 16    | 20  | 25                    | 28  | 32  | 35  | 38  |  |
| Диапазон эффективной<br>глубины анкеровки и глубины<br>отверстий                           | $h_{ef,  m min}$      | 60                 | 75    | 95  | 115                   | 135 | 155 | 170 | 190 |  |
|                                                                                            | $h_{ef,\mathrm{max}}$ | 145                | 190   | 240 | 285                   | 335 | 380 | 430 | 480 |  |
| Мин. толщина основания<br>Диаметр отверстия в<br>прикрепляемом<br>конструкционном элементе | $h_{\!	ext{min}}$     | 120                | 140   | 165 | 220                   | 250 | 275 | 310 | 350 |  |
| nonerpy, apromising science in a                                                           | 1111111               | $h_{ef}$ +30       | 0≥100 |     | $h_{\!e\!f}$ +2 $d_0$ |     |     |     |     |  |
| Мин. Межосевое расстояние                                                                  | $s_{\min}$            | 50                 | 65    | 80  | 100                   | 115 | 130 | 145 | 160 |  |
| Мин. Краевое расстояние                                                                    | $c_{ m min}$          | 50                 | 65    | 80  | 100                   | 115 | 130 | 145 | 160 |  |
| Критическое краевое<br>расстояние при выкалывании<br>бетона основания                      | $c_{cr,N}$            | 1.5 $h_{\!e\!f}$   |       |     |                       |     |     |     |     |  |
| Критическое межосевое расстояние при выкалывании бетона основания                          | $s_{cr,N}$            | 2.0 $C_{\sigma,N}$ |       |     |                       |     |     |     |     |  |







#### » Данные для расчета

#### Растяжение

### Расчетное сопротивление растяжению для одного анкера составляет наименьшее значение из

$$N_{Rd} = \min \left( N_{Rd,p}, \ N_{Rd,s} 
ight)$$

- Расчетного сопротивление разрушению при растягивающей нагрузке:

$$N_{Rd,p} = N_{Rd,p}^0 \cdot f_{b,p} \cdot f_{h,p} \cdot f_{s,N} \cdot f_{ed,N} \cdot f_{sd,N} \cdot f_{re,N}$$

- Расчетное сопротивление разрушению по стали:  $N_{Rd,s}$ 

> Расчетное комбинированное сопротивление растяжению и сопротивление разрушению бетонного конуса:  $N^0_{Rd,p}$ 

| Размер анкера         | D10 | D13  | D16  | D19  | D22  | D25  | D29  | D32  |
|-----------------------|-----|------|------|------|------|------|------|------|
| $N^0_{Rd\cdot p}$     | 9.0 | 14.7 | 17.9 | 29.1 | 34.8 | 44.0 | 46.3 | 51.4 |
| $h_{ef,s~({\sf mm})}$ | 90  | 110  | 125  | 170  | 190  | 210  | 240  | 270  |

<sup>\*</sup> бетон С21,  $f_{ck}$  =21 N/mm

> Влияние прочности бетона на комбинированное сопротивление растяжению и сопротивление разрушению бетонного конуса:  $f_{b,p}$ 

| Марка бетона | C21  | C24  | C27  | C30  | C35  | C40  | C45  | C50  |
|--------------|------|------|------|------|------|------|------|------|
| $f_{b,p}$    | 1.00 | 1.01 | 1.03 | 1.04 | 1.05 | 1.07 | 1.08 | 1.09 |

 $<sup>\</sup>star$   $f_{ck}$  : Прочность бетона на сжатие, измеренная на кубах со стороной 150 мм

> Влияние глубины анкеровки на сопротивление разрушению бетонного конуса  $f_{hp}$ 

$$f_{h,p} = h_{e\!f}/h_{e\!f,s}$$
 где:  $h_{e\!f, ext{min}} \leq h_{e\!f} \leq h_{e\!f, ext{max}}$ 

#### > Коэффициент влияния расстояния от оси анкера до края бетона: $f_{ m sN}$

| Краевое расстояние | D10           | D13                  | D16       | D19  | D22    | D25       | D29  | D32  |
|--------------------|---------------|----------------------|-----------|------|--------|-----------|------|------|
| 50                 | 0.81          | 1                    | I<br>I    |      | l<br>L | l<br>L    | 1    |      |
| 65                 | 0.84          | 0.82                 | <br> <br> | i    | [<br>[ | <br> <br> |      | /    |
| 80                 | 0.88          | 0.85                 | 0.83      |      |        | i<br>I    |      |      |
| 100                | 0.92          | 0.88                 | 0.86      | 0.82 | !<br>! | !<br>!    | 1    |      |
| 115                | 0.96          | 0.91                 | 0.88      | 0.84 | 0.82   | i<br>I    |      |      |
| 130                | 0.99          | 0.94                 | 0.91      | 0.85 | 0.84   | 0.82      | 1    |      |
| 135                | 1.00          | 0.95                 | 0.92      | 0.86 | 0.84   | 0.83      | 0.81 |      |
| 145                | !             | 0.96                 | 0.93      | 0.87 | 0.85   | 0.84      | 0.82 | 0.81 |
| 160                | ;<br> <br>    | 0.99                 | 0.96      | 0.89 | 0.87   | 0.85      | 0.83 | 0.82 |
| 165                | ;<br> <br>    | 1.00                 | 0.96      | 0.89 | 0.87   | 0.86      | 0.84 | 0.82 |
| 190                | <br>!         | !<br>!<br>!          | 1.00      | 0.92 | 0.90   | 0.88      | 0.86 | 0.84 |
| 255                | ;<br>!        |                      | i         | 1.00 | 0.97   | 0.94      | 0.91 | 0.89 |
| 285                | <br> <br>     | <br> <br>            |           | [    | 1.00   | 0.97      | 0.94 | 0.91 |
| 315                | f = 0         | 7+03-                | $c \le 1$ | 1    |        | 1.00      | 0.96 | 0.93 |
| 360                | $J_{s,N}$ — ( | c                    | cr.N      |      |        | <br>      | 1.00 | 0.97 |
| 405                |               | $c \geq \! c_{\min}$ |           |      |        |           | !    | 1.00 |

#### > Влияние расстояния от оси анкера до края бетона: $f_{e\!d,N}$

| Краевое расстояние | D10  | D13              | D16                                    | D19       | D22         | D25         | D29  | D32        |
|--------------------|------|------------------|----------------------------------------|-----------|-------------|-------------|------|------------|
| 50                 | 0.59 | I<br>I           | I<br>I                                 | I<br>I    | I<br>I      | <br>        | 1    | <br>       |
| 65                 | 0.62 | 0.60             |                                        | i         |             |             |      |            |
| 80                 | 0.65 | 0.62             | 0.61                                   | [         | í           | <br>        | 1    |            |
| 100                | 0.69 | 0.65             | 0.63                                   | 0.60      | /           |             | /    | :          |
| 115                | 0.71 | 0.67             | 0.65                                   | 0.61      | 0.60        | <br> <br>   | 1    | <br>       |
| 130                | 0.74 | 0.70             | 0.67                                   | 0.63      | 0.61        | 0.60        | 1    | i<br>I     |
| 145                | 0.77 | 0.72             | 0.69                                   | 0.64      | 0.63        | 0.62        | 0.60 | /<br> <br> |
| 160                | 0.80 | 0.74             | 0.71                                   | 0.66      | 0.64        | 0.63        | 0.61 | 0.60       |
| 270                | 1.00 | 0.91             | 0.86                                   | 0.76      | 0.74        | 0.71        | 0.69 | 0.67       |
| 330                |      | 1.00             | 0.94                                   | 0.82      | 0.79        | 0.76        | 0.73 | 0.70       |
| 375                |      | ;_               | 1.00                                   | 0.87      | 0.83        | 0.80        | 0.76 | 0.73       |
| 510                |      | :<br>:<br>!      | (<br> <br>                             | 1.00      | 0.95        | 0.90        | 0.85 | 0.81       |
| 570                |      | :<br> <br>       | <br> <br>                              | <br> <br> | 1.00        | 0.95        | 0.90 | 0.85       |
| 630                | £ =  | 75+05-           | $\frac{s}{s} \leq 1$                   | <br>      | [<br>]<br>] | 1.00        | 0.94 | 0.89       |
| 720                |      | 0.5+0.5-         | $\overrightarrow{\beta_{cr,N}} \leq 1$ | <br> <br> | [           |             | 1.00 | 0.94       |
| 810                |      | $s \ge s_{\min}$ |                                        | <br> <br> | i           | ;<br>!<br>! |      | 1.00       |

#### > Влияние осевого расстояния между анкерами: $f_{sl,N}$

| Расстояние между<br>анкерами | D10            | D13              | D16               | D19        | D22  | D25       | D29        | D32    |
|------------------------------|----------------|------------------|-------------------|------------|------|-----------|------------|--------|
| 50                           | 0.59           | I<br>I           | 1<br>1            | <br>       |      | <br>      | <br>       | <br>   |
| 65                           | 0.62           | 0.60             | 1                 | <br> <br>  |      |           | :          | i      |
| 80                           | 0.65           | 0.62             | 0.61              |            |      | <br>      |            | [      |
| 100                          | 0.69           | 0.65             | 0.63              | 0.60       |      |           | :          | [      |
| 115                          | 0.71           | 0.67             | 0.65              | 0.61       | 0.60 | <br> <br> |            | i<br>I |
| 130                          | 0.74           | 0.70             | 0.67              | 0.63       | 0.61 | 0.60      |            | 1<br>1 |
| 145                          | 0.77           | 0.72             | 0.69              | 0.64       | 0.63 | 0.62      | 0.60       | i<br>I |
| 160                          | 0.80           | 0.74             | 0.71              | 0.66       | 0.64 | 0.63      | 0.61       | 0.60   |
| 270                          | 1.00           | 0.91             | 0.86              | 0.76       | 0.74 | 0.71      | 0.69       | 0.67   |
| 330                          | î<br>          | 1.00             | 0.94              | 0.82       | 0.79 | 0.76      | 0.73       | 0.70   |
| 375                          |                | [                | 1.00              | 0.87       | 0.83 | 0.80      | 0.76       | 0.73   |
| 510                          | ;<br> <br>     | ;<br>[<br>]      | 1                 | 1.00       | 0.95 | 0.90      | 0.85       | 0.81   |
| 570                          | ;<br> <br>     | ;<br> <br>       | i<br>I            | ;          | 1.00 | 0.95      | 0.90       | 0.85   |
| 630                          | f = 0          | 0.5 + 0.5 -      | $\frac{s}{s}$ < 1 | :<br> <br> |      | 1.00      | 0.94       | 0.89   |
| 720                          | $J_{sd,N} - 0$ | ક                | $S_{cr,N} \leq 1$ | <br> <br>  |      |           | 1.00       | 0.94   |
| 810                          | i<br>i<br>i    | $s \ge s_{\min}$ | *                 | <br>       |      | ;         | ;<br> <br> | 1.00   |

#### > Коэффициент выкрашивания оболочки: $f_{re,N}$

| $h_{\!e\!f}$ (mm)                                          | 40   | 50   | 60   | 70   | 80   | 90   | 100  |
|------------------------------------------------------------|------|------|------|------|------|------|------|
| $f_{re,N} \!=\! 0.5 \!+\! \frac{h_{e\!f}}{200} \!\leq\! 1$ | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00 |

<sup>\*</sup> Если в зоне анкеровки имеется арматура с шагом > 150 мм или диаметром  $\leq$  10 мм и шагом > 100 мм, то независимо от глубины анкеровки может применяться коэффициент скалывания оболочки  $\Psi_{re,N}$  = 1,0.

#### > Расчетное сопротивление разрушению по стали: $N_{Rd,s}$

| Размер анкера         | D10  | D13  | D16  | D19   | D22   | D25   | D29   | D32   |
|-----------------------|------|------|------|-------|-------|-------|-------|-------|
| $N_{Rd,s}$ SD500 (kN) | 27.5 | 48.9 | 76.6 | 110.5 | 149.3 | 195.4 | 247.8 | 306.3 |
| $N_{Rd,s}$ SD400 (kN) | 23.4 | 41.6 | 65.3 | 94.1  | 127.2 | 166.5 | 211.1 | 261.0 |
| $N_{Rd,s}$ SD300 (kN) | 17.6 | 31.2 | 48.9 | 70.6  | 95.4  | 124.9 | 158.3 | 195.7 |

<sup>\*</sup> KS D 3504 2016







#### **С**двиг

Расчетное сопротивление на сдвиг для одного анкера составляет наименьшее значение из:  $V_{Rd} = \min_{\min} \left( V_{Rd,cp}, V_{Rd,cp}, V_{Rd,s} \right)$ 

- Расчетное сопротивление разрушению кромки бетона::

$$V_{Rd,c} = V_{Rd,c}^0 \cdot f_{b,V} \cdot f_{\alpha,V} \cdot f_{b,V} \cdot f_{sc,V} \cdot f_{s,V}$$

- Расчетное сопротивление разрушению на скол бетона:

$$V_{Rd,qp} = k \cdot N_{Rd,p}$$

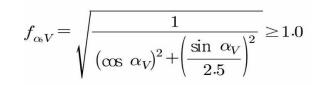
- Расчетное сопротивление стали срезающему усилию:

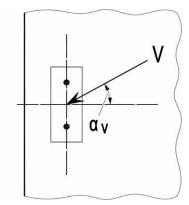
 $V_{Rd,s}$ 

> Расчетное сопротивление разрушению кромки бетона:  $V^0_{Rdsc}$ :

| Размер анкера          | D10 | D13 | D16  | D19  | D22  | D25  | D29  | D32  |
|------------------------|-----|-----|------|------|------|------|------|------|
| $V^0_{Rd,c^{(kN)}}$ :  | 5.4 | 84  | 11.7 | 17.3 | 21.9 | 26.8 | 32.6 | 38.8 |
| $c_{\min{(mm)}}$       | 50  | 65  | 80   | 100  | 115  | 130  | 145  | 160  |
| $h_{\!ef,s	ext{(mm)}}$ | 90  | 110 | 125  | 170  | 190  | 210  | 240  | 270  |

<sup>\*</sup> Бетон С21,  $f_{ck}$  =21 N/ mm $^2$ 


> Влияние прочности бетона:  $f_{b,V}$ 


| Марка бетона | C21  | C24  | C27  | C30  | C35  | C40  | C45  | C50  |
|--------------|------|------|------|------|------|------|------|------|
| $f_{b,V}$    | 1.00 | 1.07 | 1.13 | 1.20 | 1.29 | 1.38 | 1.46 | 1.54 |

 $<sup>*</sup>f_{ck}$ : Прочность бетона на сжатие, измеренная на кубах со стороной 150 мм

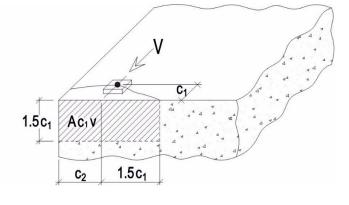
#### > Влияние направления сдвиговой нагрузки: $f_{lpha,V}$

| угол $lpha_V$ [ $^{\circ}$ ] | 0    | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   |
|------------------------------|------|------|------|------|------|------|------|------|------|------|
| $f_{lpha\!,V}$               | 1.00 | 1.01 | 1.05 | 1.13 | 1.24 | 1.40 | 1.64 | 1.97 | 2.32 | 2.50 |





#### > Влияние толщины элемента: $f_{h\,V}$


| $h\!/c_1$ (For $h\!<\!1.5c_1$ )     | 0.3  | 0.5  | 0.7  | 0.9  | 1.1  | 1.3  | 1.5  |
|-------------------------------------|------|------|------|------|------|------|------|
| $f_{h,V} = \sqrt{\frac{h}{1.5c_1}}$ | 0.45 | 0.58 | 0.68 | 0.77 | 0.86 | 0.93 | 1.00 |

#### > Влияние расстояния до кромки: $f_{s,V}$

| $c_2/c_1$  | 0.3  | 0.5  | 0.7  | 0.9  | 1.1  | 1,3  | 1.5  |
|------------|------|------|------|------|------|------|------|
| $f_{ed,V}$ | 0.76 | 0.80 | 0.84 | 0.88 | 0.92 | 0.96 | 1.00 |

для  $c_2 \le 1.5c_1$ 

$$f_{s\,V}\!=\!0.7\!+\!\frac{c_2}{1.5c_1}\!\leq\!1$$



[ 그림4-2 ]



## > Коэффициент влияния расстояния между анкерами и краевого расстояния на краевое сопротивление бетона: $f_{sc,V}$

|                           |      |      |      |                |             |      |      | Гру  |             | из дв $c_{ m min}$ | ух ан    | керо | В    |      |      |      |      |
|---------------------------|------|------|------|----------------|-------------|------|------|------|-------------|--------------------|----------|------|------|------|------|------|------|
|                           |      | 1.0  | 1.2  | 1.4            | 1.6         | 1.8  | 2.0  | 2.2  | 2.4         | 2.6                | 2.8      | 3.0  | 3.2  | 3.4  | 3.6  | 3.8  | 4.0  |
| Один ан                   | нкер | 1.00 | 1.31 | 1.66           | 2.02        | 2.41 | 2.83 | 3.26 | 3.72        | 4.19               | 4.69     | 5.20 | 5.72 | 6.27 | 6.83 | 7.41 | 8.00 |
|                           | 1.0  | 0.67 | 0.84 | 1.03           | 1.22        | 1.43 | 1.65 | 1.88 | 2.12        | 2.36               | 2.62     | 2.89 | 3.16 | 3.44 | 3.73 | 4.03 | 4.33 |
|                           | 1.5  | 0.75 | 0.93 | 1.12           | 1.33        | 1.54 | 1.77 | 2.00 | 2.25        | 2.50               | 2.76     | 3.03 | 3.31 | 3.60 | 3.89 | 4.19 | 4.50 |
|                           | 2.0  | 0.83 | 1.02 | 1.22           | 1.43        | 1.65 | 1.89 | 2.13 | 2.38        | 2.63               | 2.90     | 3.18 | 3.46 | 3.75 | 4.05 | 4.35 | 4.67 |
|                           | 2.5  | 0.92 | 1.11 | 1.32           | 1.54        | 1.77 | 2.00 | 2.25 | 2.50        | 2.77               | 3.04     | 3.32 | 3.61 | 3.90 | 4.21 | 4.52 | 4.83 |
|                           | 3.0  | 1.00 | 1.20 | 1.42           | 1.64        | 1.88 | 2.12 | 2.37 | 2.63        | 2.90               | 3.18     | 3.46 | 3.76 | 4.06 | 4.36 | 4.68 | 5.00 |
|                           | 3.5  |      | 1.30 | 1.52           | 1.75        | 1.99 | 2.24 | 2.50 | 2.76        | 3.04               | 3.32     | 3.61 | 3.91 | 4.21 | 4.52 | 4.84 | 5.17 |
|                           | 4.0  |      | <br> | 1.62           | 1.86        | 2.10 | 2.36 | 2.62 | 2.89        | 3.17               | 3.46     | 3.75 | 4.05 | 4.36 | 4.68 | 5.00 | 5.33 |
|                           | 4.5  |      | <br> | <br>           | 1.96        | 2.21 | 2.47 | 2.74 | 3.02        | 3.31               | 3.60     | 3.90 | 4.20 | 4.52 | 4.84 | 5.17 | 5.50 |
|                           | 5.0  |      | <br> | <br> <br> <br> | <br>        | 2.33 | 2.59 | 2.87 | 3.15        | 3.44               | 3.74     | 4.04 | 4.35 | 4.67 | 5.00 | 5.33 | 5.67 |
|                           | 5.5  |      | <br> | <br>           | <br>        | <br> | 2.71 | 2.99 | 3.28        | 3.57               | 3.88     | 4.19 | 4.50 | 4.82 | 5.15 | 5.49 | 5.83 |
|                           | 6.0  |      | <br> | <br>           | <br>        | <br> | 2.83 | 3.11 | 3.41        | 3.71               | 4.02     | 4.33 | 4.65 | 4.98 | 5.31 | 5.65 | 6.00 |
| $s_{\!2}/c_{\!	ext{min}}$ | 6.5  |      | <br> | <br>           | [<br>[<br>[ | <br> |      | 3.24 | 3.54        | 3.84               | 4.16     | 4.47 | 4.80 | 5.13 | 5.47 | 5.82 | 6.17 |
|                           | 7.0  |      | <br> | <br>           | <br>        | 1    |      | <br> | 3.67        | 3.98               | 4.29     | 4.62 | 4.95 | 5.29 | 5.63 | 5.98 | 6.33 |
|                           | 7.5  |      | <br> | <br>           | <br>        | <br> | <br> |      | [<br>[<br>[ | 4.11               | 4.43     | 4.76 | 5.10 | 5.44 | 5.79 | 6.14 | 6.50 |
|                           | 8.0  |      | <br> | <br>           | <br>        | <br> |      |      | <br>        |                    | 4.57     | 4.91 | 5.25 | 5.59 | 5.95 | 6.30 | 6.67 |
|                           | 8.5  | 1    | <br> | I<br>I<br>I    | <br>        | <br> | <br> | <br> | <br>        |                    |          | 5.05 | 5.40 | 5.75 | 6.10 | 6.47 | 6.83 |
|                           | 9.0  |      | <br> | <br>           | <br>        | 1    | <br> | <br> | <br>        |                    |          | 5.20 | 5.55 | 5.90 | 6.26 | 6.63 | 7.00 |
|                           | 9.5  |      | <br> |                | <br>        | <br> |      | <br> | <br>        |                    |          | <br> | 5.69 | 6.05 | 6.42 | 6.79 | 7.17 |
|                           | 10.0 |      | <br> |                | <br>        | <br> |      | <br> | <br>        |                    |          |      |      | 6.21 | 6.58 | 6.95 | 7.33 |
|                           | 10.5 |      | <br> | <br> <br> <br> | <br>        | <br> |      | <br> | <br>        |                    |          | <br> |      | <br> | 6.74 | 7.12 | 7.50 |
|                           | 11.0 |      |      |                |             | <br> |      | <br> | <br>        |                    |          | <br> |      |      |      | 7.28 | 7.67 |
|                           | 11.5 |      | <br> |                | <br>        |      |      |      | <br>        | <u> </u>           | <u> </u> | <br> |      |      |      |      | 7.83 |
|                           | 12.0 |      | <br> | <br>           | <br>        | <br> |      | <br> | <br>        |                    |          |      |      |      |      |      | 8.00 |

$$f_{sc,V} \! = \! rac{1}{2} rac{A_{c,V}}{A_{c,V}^0}$$

гле

$$c_1 \ge c_{\min}$$
,  $s_2 \ge s_{\min}$ ,  $h \ge 3c_1$ 

$$A_{c,V} = 4.5c_1^2$$
,  $A_{c,V}^0 = (3c_1 + s_2) \times 1.5c_1$ 

> Расчетное разрушение отрыва бетона:  $V_{Rd,cp}$ 

$$V_{Rd,cp} = k \cdot N_{Rd,p}$$

где :

$$k=1$$
  $h_{ef} < 60 \text{mm}$   $k=2$   $h_{ef} \ge 60 \text{mm}$ 

> Расчетное сопротивление стали:  $V_{Rd,s}$ 

| Разм       | Размер анкера |      | D13  | D16  | D19  | D22  | D25  | D29   | D32   |
|------------|---------------|------|------|------|------|------|------|-------|-------|
| $V_{Rd,s}$ | SD500 (kN)    | 12.8 | 22.8 | 35.7 | 51.6 | 69.7 | 91.2 | 115.6 | 143.0 |
| $V_{Rd,s}$ | SD400 (kN)    | 10.9 | 19.4 | 30.5 | 43.9 | 59.4 | 77.7 | 98.5  | 121.8 |
| $V_{Rd,s}$ | SD300 (kN)    | 8.2  | 14.6 | 22.8 | 32.9 | 44.5 | 58.3 | 73.9  | 91.3  |

<sup>\*</sup> KS D 35042016



# ■ Сопротивление комбинированным нагрузкам растяжения и сдвига

Для комбинированного растяжения и сдвига должно выполняться следующее уравнение.

$$\left(rac{N_{Sd}}{N_{Rd}}
ight)^{lpha} + \left(rac{V_{Sd}}{V_{Rd}}
ight)^{lpha} \leq 1$$

где :

 $N_{Sd}$  : расчетное значение растягивающей нагрузки

 $V_{Sd}$  : расчетное значение нагрузки сдвига

 $N_{Rd}$  : расчетное значение сопротивления растяжению

 $V_{Rd}$  : расчетное значение сопротивления сдвигу

 $lpha{=}2.0$  : если  $N_{Rd}$  и  $V_{Rd}$  управляются разрушением стали

 $\alpha \! = \! 1.5$  : для всех других режимов разрушения